/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Implementation of beacon processing. */ #include "core.h" /* * Configure parameters for the beacon queue * * This function will modify certain transmit queue properties depending on * the operating mode of the station (AP or AdHoc). Parameters are AIFS * settings and channel width min/max */ static int ath_beaconq_config(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ath9k_txq_info qi; ath9k_hw_gettxqueueprops(ah, sc->sc_bhalq, &qi); if (sc->sc_opmode == ATH9K_M_HOSTAP) { /* Always burst out beacon and CAB traffic. */ qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; } else { /* Adhoc mode; important thing is to use 2x cwmin. */ qi.tqi_aifs = sc->sc_beacon_qi.tqi_aifs; qi.tqi_cwmin = 2*sc->sc_beacon_qi.tqi_cwmin; qi.tqi_cwmax = sc->sc_beacon_qi.tqi_cwmax; } if (!ath9k_hw_settxqueueprops(ah, sc->sc_bhalq, &qi)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to update h/w beacon queue parameters\n", __func__); return 0; } else { ath9k_hw_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ return 1; } } /* * Setup the beacon frame for transmit. * * Associates the beacon frame buffer with a transmit descriptor. Will set * up all required antenna switch parameters, rate codes, and channel flags. * Beacons are always sent out at the lowest rate, and are not retried. */ static void ath_beacon_setup(struct ath_softc *sc, struct ath_vap *avp, struct ath_buf *bf) { struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; struct ath_hal *ah = sc->sc_ah; struct ath_desc *ds; int flags, antenna; const struct ath9k_rate_table *rt; u8 rix, rate; int ctsrate = 0; int ctsduration = 0; struct ath9k_11n_rate_series series[4]; DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n", __func__, skb, skb->len); /* setup descriptors */ ds = bf->bf_desc; flags = ATH9K_TXDESC_NOACK; if (sc->sc_opmode == ATH9K_M_IBSS && ah->ah_caps.halVEOLSupport) { ds->ds_link = bf->bf_daddr; /* self-linked */ flags |= ATH9K_TXDESC_VEOL; /* Let hardware handle antenna switching. */ antenna = 0; } else { ds->ds_link = 0; /* * Switch antenna every beacon. * Should only switch every beacon period, not for every * SWBA's * XXX assumes two antenna */ antenna = ((sc->ast_be_xmit / sc->sc_nbcnvaps) & 1 ? 2 : 1); } ds->ds_data = bf->bf_buf_addr; /* * Calculate rate code. * XXX everything at min xmit rate */ rix = sc->sc_minrateix; rt = sc->sc_currates; rate = rt->info[rix].rateCode; if (sc->sc_flags & ATH_PREAMBLE_SHORT) rate |= rt->info[rix].shortPreamble; ath9k_hw_set11n_txdesc(ah, ds , skb->len + FCS_LEN /* frame length */ , ATH9K_PKT_TYPE_BEACON /* Atheros packet type */ , avp->av_btxctl.txpower /* txpower XXX */ , ATH9K_TXKEYIX_INVALID /* no encryption */ , ATH9K_KEY_TYPE_CLEAR /* no encryption */ , flags /* no ack, veol for beacons */ ); /* NB: beacon's BufLen must be a multiple of 4 bytes */ ath9k_hw_filltxdesc(ah, ds , roundup(skb->len, 4) /* buffer length */ , true /* first segment */ , true /* last segment */ , ds /* first descriptor */ ); memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); series[0].Tries = 1; series[0].Rate = rate; series[0].ChSel = sc->sc_tx_chainmask; series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0; ath9k_hw_set11n_ratescenario(ah, ds, ds, 0, ctsrate, ctsduration, series, 4, 0); } /* Move everything from the vap's mcast queue to the hardware cab queue. * Caller must hold mcasq lock and cabq lock * XXX MORE_DATA bit? */ static void empty_mcastq_into_cabq(struct ath_hal *ah, struct ath_txq *mcastq, struct ath_txq *cabq) { struct ath_buf *bfmcast; BUG_ON(list_empty(&mcastq->axq_q)); bfmcast = list_first_entry(&mcastq->axq_q, struct ath_buf, list); /* link the descriptors */ if (!cabq->axq_link) ath9k_hw_puttxbuf(ah, cabq->axq_qnum, bfmcast->bf_daddr); else *cabq->axq_link = bfmcast->bf_daddr; /* append the private vap mcast list to the cabq */ cabq->axq_depth += mcastq->axq_depth; cabq->axq_totalqueued += mcastq->axq_totalqueued; cabq->axq_linkbuf = mcastq->axq_linkbuf; cabq->axq_link = mcastq->axq_link; list_splice_tail_init(&mcastq->axq_q, &cabq->axq_q); mcastq->axq_depth = 0; mcastq->axq_totalqueued = 0; mcastq->axq_linkbuf = NULL; mcastq->axq_link = NULL; } /* This is only run at DTIM. We move everything from the vap's mcast queue * to the hardware cab queue. Caller must hold the mcastq lock. */ static void trigger_mcastq(struct ath_hal *ah, struct ath_txq *mcastq, struct ath_txq *cabq) { spin_lock_bh(&cabq->axq_lock); if (!list_empty(&mcastq->axq_q)) empty_mcastq_into_cabq(ah, mcastq, cabq); /* cabq is gated by beacon so it is safe to start here */ if (!list_empty(&cabq->axq_q)) ath9k_hw_txstart(ah, cabq->axq_qnum); spin_unlock_bh(&cabq->axq_lock); } /* * Generate beacon frame and queue cab data for a vap. * * Updates the contents of the beacon frame. It is assumed that the buffer for * the beacon frame has been allocated in the ATH object, and simply needs to * be filled for this cycle. Also, any CAB (crap after beacon?) traffic will * be added to the beacon frame at this point. */ static struct ath_buf *ath_beacon_generate(struct ath_softc *sc, int if_id) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; struct ath_vap *avp; struct sk_buff *skb; int cabq_depth; int mcastq_depth; int is_beacon_dtim = 0; unsigned int curlen; struct ath_txq *cabq; struct ath_txq *mcastq; avp = sc->sc_vaps[if_id]; mcastq = &avp->av_mcastq; cabq = sc->sc_cabq; ASSERT(avp); if (avp->av_bcbuf == NULL) { DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n", __func__, avp, avp->av_bcbuf); return NULL; } bf = avp->av_bcbuf; skb = (struct sk_buff *) bf->bf_mpdu; /* * Update dynamic beacon contents. If this returns * non-zero then we need to remap the memory because * the beacon frame changed size (probably because * of the TIM bitmap). */ curlen = skb->len; /* XXX: spin_lock_bh should not be used here, but sparse bitches * otherwise. We should fix sparse :) */ spin_lock_bh(&mcastq->axq_lock); mcastq_depth = avp->av_mcastq.axq_depth; if (ath_update_beacon(sc, if_id, &avp->av_boff, skb, mcastq_depth) == 1) { ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); bf->bf_buf_addr = ath_skb_map_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); } else { pci_dma_sync_single_for_cpu(sc->pdev, bf->bf_buf_addr, skb_tailroom(skb), PCI_DMA_TODEVICE); } /* * if the CABQ traffic from previous DTIM is pending and the current * beacon is also a DTIM. * 1) if there is only one vap let the cab traffic continue. * 2) if there are more than one vap and we are using staggered * beacons, then drain the cabq by dropping all the frames in * the cabq so that the current vaps cab traffic can be scheduled. */ spin_lock_bh(&cabq->axq_lock); cabq_depth = cabq->axq_depth; spin_unlock_bh(&cabq->axq_lock); is_beacon_dtim = avp->av_boff.bo_tim[4] & 1; if (mcastq_depth && is_beacon_dtim && cabq_depth) { /* * Unlock the cabq lock as ath_tx_draintxq acquires * the lock again which is a common function and that * acquires txq lock inside. */ if (sc->sc_nvaps > 1) { ath_tx_draintxq(sc, cabq, false); DPRINTF(sc, ATH_DBG_BEACON, "%s: flush previous cabq traffic\n", __func__); } } /* Construct tx descriptor. */ ath_beacon_setup(sc, avp, bf); /* * Enable the CAB queue before the beacon queue to * insure cab frames are triggered by this beacon. */ if (is_beacon_dtim) trigger_mcastq(ah, mcastq, cabq); spin_unlock_bh(&mcastq->axq_lock); return bf; } /* * Startup beacon transmission for adhoc mode when they are sent entirely * by the hardware using the self-linked descriptor + veol trick. */ static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; struct ath_vap *avp; struct sk_buff *skb; avp = sc->sc_vaps[if_id]; ASSERT(avp); if (avp->av_bcbuf == NULL) { DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n", __func__, avp, avp != NULL ? avp->av_bcbuf : NULL); return; } bf = avp->av_bcbuf; skb = (struct sk_buff *) bf->bf_mpdu; /* Construct tx descriptor. */ ath_beacon_setup(sc, avp, bf); /* NB: caller is known to have already stopped tx dma */ ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); ath9k_hw_txstart(ah, sc->sc_bhalq); DPRINTF(sc, ATH_DBG_BEACON, "%s: TXDP%u = %llx (%p)\n", __func__, sc->sc_bhalq, ito64(bf->bf_daddr), bf->bf_desc); } /* * Setup a h/w transmit queue for beacons. * * This function allocates an information structure (struct ath9k_txq_info) * on the stack, sets some specific parameters (zero out channel width * min/max, and enable aifs). The info structure does not need to be * persistant. */ int ath_beaconq_setup(struct ath_hal *ah) { struct ath9k_txq_info qi; memzero(&qi, sizeof(qi)); qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; /* NB: don't enable any interrupts */ return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi); } /* * Allocate and setup an initial beacon frame. * * Allocate a beacon state variable for a specific VAP instance created on * the ATH interface. This routine also calculates the beacon "slot" for * staggared beacons in the mBSSID case. */ int ath_beacon_alloc(struct ath_softc *sc, int if_id) { struct ath_vap *avp; struct ieee80211_hdr *wh; struct ath_buf *bf; struct sk_buff *skb; avp = sc->sc_vaps[if_id]; ASSERT(avp); /* Allocate a beacon descriptor if we haven't done so. */ if (!avp->av_bcbuf) { /* * Allocate beacon state for hostap/ibss. We know * a buffer is available. */ avp->av_bcbuf = list_first_entry(&sc->sc_bbuf, struct ath_buf, list); list_del(&avp->av_bcbuf->list); if (sc->sc_opmode == ATH9K_M_HOSTAP || !sc->sc_ah->ah_caps.halVEOLSupport) { int slot; /* * Assign the vap to a beacon xmit slot. As * above, this cannot fail to find one. */ avp->av_bslot = 0; for (slot = 0; slot < ATH_BCBUF; slot++) if (sc->sc_bslot[slot] == ATH_IF_ID_ANY) { /* * XXX hack, space out slots to better * deal with misses */ if (slot+1 < ATH_BCBUF && sc->sc_bslot[slot+1] == ATH_IF_ID_ANY) { avp->av_bslot = slot+1; break; } avp->av_bslot = slot; /* NB: keep looking for a double slot */ } BUG_ON(sc->sc_bslot[avp->av_bslot] != ATH_IF_ID_ANY); sc->sc_bslot[avp->av_bslot] = if_id; sc->sc_nbcnvaps++; } } /* release the previous beacon frame , if it already exists. */ bf = avp->av_bcbuf; if (bf->bf_mpdu != NULL) { skb = (struct sk_buff *)bf->bf_mpdu; ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; } /* * NB: the beacon data buffer must be 32-bit aligned; * we assume the wbuf routines will return us something * with this alignment (perhaps should assert). * FIXME: Fill avp->av_boff.bo_tim,avp->av_btxctl.txpower and * avp->av_btxctl.shortPreamble */ skb = ieee80211_beacon_get(sc->hw, avp->av_if_data); if (skb == NULL) { DPRINTF(sc, ATH_DBG_BEACON, "%s: cannot get skb\n", __func__); return -ENOMEM; } /* * Calculate a TSF adjustment factor required for * staggered beacons. Note that we assume the format * of the beacon frame leaves the tstamp field immediately * following the header. */ if (avp->av_bslot > 0) { u64 tsfadjust; __le64 val; int intval; /* FIXME: Use default value for now: Sujith */ intval = ATH_DEFAULT_BINTVAL; /* * The beacon interval is in TU's; the TSF in usecs. * We figure out how many TU's to add to align the * timestamp then convert to TSF units and handle * byte swapping before writing it in the frame. * The hardware will then add this each time a beacon * frame is sent. Note that we align vap's 1..N * and leave vap 0 untouched. This means vap 0 * has a timestamp in one beacon interval while the * others get a timestamp aligned to the next interval. */ tsfadjust = (intval * (ATH_BCBUF - avp->av_bslot)) / ATH_BCBUF; val = cpu_to_le64(tsfadjust << 10); /* TU->TSF */ DPRINTF(sc, ATH_DBG_BEACON, "%s: %s beacons, bslot %d intval %u tsfadjust %llu\n", __func__, "stagger", avp->av_bslot, intval, (unsigned long long)tsfadjust); wh = (struct ieee80211_hdr *)skb->data; memcpy(&wh[1], &val, sizeof(val)); } bf->bf_buf_addr = ath_skb_map_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); bf->bf_mpdu = skb; return 0; } /* * Reclaim beacon resources and return buffer to the pool. * * Checks the VAP to put the beacon frame buffer back to the ATH object * queue, and de-allocates any wbuf frames that were sent as CAB traffic. */ void ath_beacon_return(struct ath_softc *sc, struct ath_vap *avp) { if (avp->av_bcbuf != NULL) { struct ath_buf *bf; if (avp->av_bslot != -1) { sc->sc_bslot[avp->av_bslot] = ATH_IF_ID_ANY; sc->sc_nbcnvaps--; } bf = avp->av_bcbuf; if (bf->bf_mpdu != NULL) { struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; } list_add_tail(&bf->list, &sc->sc_bbuf); avp->av_bcbuf = NULL; } } /* * Reclaim beacon resources and return buffer to the pool. * * This function will free any wbuf frames that are still attached to the * beacon buffers in the ATH object. Note that this does not de-allocate * any wbuf objects that are in the transmit queue and have not yet returned * to the ATH object. */ void ath_beacon_free(struct ath_softc *sc) { struct ath_buf *bf; list_for_each_entry(bf, &sc->sc_bbuf, list) { if (bf->bf_mpdu != NULL) { struct sk_buff *skb = (struct sk_buff *) bf->bf_mpdu; ath_skb_unmap_single(sc, skb, PCI_DMA_TODEVICE, get_dma_mem_context(bf, bf_dmacontext)); dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; } } } /* * Tasklet for Sending Beacons * * Transmit one or more beacon frames at SWBA. Dynamic updates to the frame * contents are done as needed and the slot time is also adjusted based on * current state. * * This tasklet is not scheduled, it's called in ISR context. */ void ath9k_beacon_tasklet(unsigned long data) { #define TSF_TO_TU(_h,_l) \ ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10)) struct ath_softc *sc = (struct ath_softc *)data; struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf = NULL; int slot, if_id; u32 bfaddr; u32 rx_clear = 0, rx_frame = 0, tx_frame = 0; u32 show_cycles = 0; u32 bc = 0; /* beacon count */ u64 tsf; u32 tsftu; u16 intval; if (sc->sc_noreset) { show_cycles = ath9k_hw_GetMibCycleCountsPct(ah, &rx_clear, &rx_frame, &tx_frame); } /* * Check if the previous beacon has gone out. If * not don't try to post another, skip this period * and wait for the next. Missed beacons indicate * a problem and should not occur. If we miss too * many consecutive beacons reset the device. */ if (ath9k_hw_numtxpending(ah, sc->sc_bhalq) != 0) { sc->sc_bmisscount++; /* XXX: doth needs the chanchange IE countdown decremented. * We should consider adding a mac80211 call to indicate * a beacon miss so appropriate action could be taken * (in that layer). */ if (sc->sc_bmisscount < BSTUCK_THRESH) { if (sc->sc_noreset) { DPRINTF(sc, ATH_DBG_BEACON, "%s: missed %u consecutive beacons\n", __func__, sc->sc_bmisscount); if (show_cycles) { /* * Display cycle counter stats * from HW to aide in debug of * stickiness. */ DPRINTF(sc, ATH_DBG_BEACON, "%s: busy times: rx_clear=%d, " "rx_frame=%d, tx_frame=%d\n", __func__, rx_clear, rx_frame, tx_frame); } else { DPRINTF(sc, ATH_DBG_BEACON, "%s: unable to obtain " "busy times\n", __func__); } } else { DPRINTF(sc, ATH_DBG_BEACON, "%s: missed %u consecutive beacons\n", __func__, sc->sc_bmisscount); } } else if (sc->sc_bmisscount >= BSTUCK_THRESH) { if (sc->sc_noreset) { if (sc->sc_bmisscount == BSTUCK_THRESH) { DPRINTF(sc, ATH_DBG_BEACON, "%s: beacon is officially " "stuck\n", __func__); ath9k_hw_dmaRegDump(ah); } } else { DPRINTF(sc, ATH_DBG_BEACON, "%s: beacon is officially stuck\n", __func__); ath_bstuck_process(sc); } } return; } if (sc->sc_bmisscount != 0) { if (sc->sc_noreset) { DPRINTF(sc, ATH_DBG_BEACON, "%s: resume beacon xmit after %u misses\n", __func__, sc->sc_bmisscount); } else { DPRINTF(sc, ATH_DBG_BEACON, "%s: resume beacon xmit after %u misses\n", __func__, sc->sc_bmisscount); } sc->sc_bmisscount = 0; } /* * Generate beacon frames. we are sending frames * staggered so calculate the slot for this frame based * on the tsf to safeguard against missing an swba. */ /* FIXME: Use default value for now - Sujith */ intval = ATH_DEFAULT_BINTVAL; tsf = ath9k_hw_gettsf64(ah); tsftu = TSF_TO_TU(tsf>>32, tsf); slot = ((tsftu % intval) * ATH_BCBUF) / intval; if_id = sc->sc_bslot[(slot + 1) % ATH_BCBUF]; DPRINTF(sc, ATH_DBG_BEACON, "%s: slot %d [tsf %llu tsftu %u intval %u] if_id %d\n", __func__, slot, (unsigned long long) tsf, tsftu, intval, if_id); bfaddr = 0; if (if_id != ATH_IF_ID_ANY) { bf = ath_beacon_generate(sc, if_id); if (bf != NULL) { bfaddr = bf->bf_daddr; bc = 1; } } /* * Handle slot time change when a non-ERP station joins/leaves * an 11g network. The 802.11 layer notifies us via callback, * we mark updateslot, then wait one beacon before effecting * the change. This gives associated stations at least one * beacon interval to note the state change. * * NB: The slot time change state machine is clocked according * to whether we are bursting or staggering beacons. We * recognize the request to update and record the current * slot then don't transition until that slot is reached * again. If we miss a beacon for that slot then we'll be * slow to transition but we'll be sure at least one beacon * interval has passed. When bursting slot is always left * set to ATH_BCBUF so this check is a noop. */ /* XXX locking */ if (sc->sc_updateslot == UPDATE) { sc->sc_updateslot = COMMIT; /* commit next beacon */ sc->sc_slotupdate = slot; } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) ath_setslottime(sc); /* commit change to hardware */ if (bfaddr != 0) { /* * Stop any current dma and put the new frame(s) on the queue. * This should never fail since we check above that no frames * are still pending on the queue. */ if (!ath9k_hw_stoptxdma(ah, sc->sc_bhalq)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: beacon queue %u did not stop?\n", __func__, sc->sc_bhalq); /* NB: the HAL still stops DMA, so proceed */ } /* NB: cabq traffic should already be queued and primed */ ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bfaddr); ath9k_hw_txstart(ah, sc->sc_bhalq); sc->ast_be_xmit += bc; /* XXX per-vap? */ } #undef TSF_TO_TU } /* * Tasklet for Beacon Stuck processing * * Processing for Beacon Stuck. * Basically calls the ath_internal_reset function to reset the chip. */ void ath_bstuck_process(struct ath_softc *sc) { DPRINTF(sc, ATH_DBG_BEACON, "%s: stuck beacon; resetting (bmiss count %u)\n", __func__, sc->sc_bmisscount); ath_internal_reset(sc); } /* * Configure the beacon and sleep timers. * * When operating as an AP this resets the TSF and sets * up the hardware to notify us when we need to issue beacons. * * When operating in station mode this sets up the beacon * timers according to the timestamp of the last received * beacon and the current TSF, configures PCF and DTIM * handling, programs the sleep registers so the hardware * will wakeup in time to receive beacons, and configures * the beacon miss handling so we'll receive a BMISS * interrupt when we stop seeing beacons from the AP * we've associated with. */ void ath_beacon_config(struct ath_softc *sc, int if_id) { #define TSF_TO_TU(_h,_l) \ ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10)) struct ath_hal *ah = sc->sc_ah; u32 nexttbtt, intval; struct ath_beacon_config conf; enum ath9k_opmode av_opmode; if (if_id != ATH_IF_ID_ANY) av_opmode = sc->sc_vaps[if_id]->av_opmode; else av_opmode = sc->sc_opmode; memzero(&conf, sizeof(struct ath_beacon_config)); /* FIXME: Use default values for now - Sujith */ /* Query beacon configuration first */ /* * Protocol stack doesn't support dynamic beacon configuration, * use default configurations. */ conf.beacon_interval = ATH_DEFAULT_BINTVAL; conf.listen_interval = 1; conf.dtim_period = conf.beacon_interval; conf.dtim_count = 1; conf.bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf.beacon_interval; /* extract tstamp from last beacon and convert to TU */ nexttbtt = TSF_TO_TU(LE_READ_4(conf.u.last_tstamp + 4), LE_READ_4(conf.u.last_tstamp)); /* XXX conditionalize multi-bss support? */ if (sc->sc_opmode == ATH9K_M_HOSTAP) { /* * For multi-bss ap support beacons are either staggered * evenly over N slots or burst together. For the former * arrange for the SWBA to be delivered for each slot. * Slots that are not occupied will generate nothing. */ /* NB: the beacon interval is kept internally in TU's */ intval = conf.beacon_interval & ATH9K_BEACON_PERIOD; intval /= ATH_BCBUF; /* for staggered beacons */ } else { intval = conf.beacon_interval & ATH9K_BEACON_PERIOD; } if (nexttbtt == 0) /* e.g. for ap mode */ nexttbtt = intval; else if (intval) /* NB: can be 0 for monitor mode */ nexttbtt = roundup(nexttbtt, intval); DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", __func__, nexttbtt, intval, conf.beacon_interval); /* Check for ATH9K_M_HOSTAP and sc_nostabeacons for WDS client */ if (sc->sc_opmode == ATH9K_M_STA) { struct ath9k_beacon_state bs; u64 tsf; u32 tsftu; int dtimperiod, dtimcount, sleepduration; int cfpperiod, cfpcount; /* * Setup dtim and cfp parameters according to * last beacon we received (which may be none). */ dtimperiod = conf.dtim_period; if (dtimperiod <= 0) /* NB: 0 if not known */ dtimperiod = 1; dtimcount = conf.dtim_count; if (dtimcount >= dtimperiod) /* NB: sanity check */ dtimcount = 0; /* XXX? */ cfpperiod = 1; /* NB: no PCF support yet */ cfpcount = 0; sleepduration = conf.listen_interval * intval; if (sleepduration <= 0) sleepduration = intval; #define FUDGE 2 /* * Pull nexttbtt forward to reflect the current * TSF and calculate dtim+cfp state for the result. */ tsf = ath9k_hw_gettsf64(ah); tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; do { nexttbtt += intval; if (--dtimcount < 0) { dtimcount = dtimperiod - 1; if (--cfpcount < 0) cfpcount = cfpperiod - 1; } } while (nexttbtt < tsftu); #undef FUDGE memzero(&bs, sizeof(bs)); bs.bs_intval = intval; bs.bs_nexttbtt = nexttbtt; bs.bs_dtimperiod = dtimperiod*intval; bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; bs.bs_cfpmaxduration = 0; /* * Calculate the number of consecutive beacons to miss * before taking a BMISS interrupt. The configuration * is specified in TU so we only need calculate based * on the beacon interval. Note that we clamp the * result to at most 15 beacons. */ if (sleepduration > intval) { bs.bs_bmissthreshold = conf.listen_interval * ATH_DEFAULT_BMISS_LIMIT / 2; } else { bs.bs_bmissthreshold = howmany(conf.bmiss_timeout, intval); if (bs.bs_bmissthreshold > 15) bs.bs_bmissthreshold = 15; else if (bs.bs_bmissthreshold <= 0) bs.bs_bmissthreshold = 1; } /* * Calculate sleep duration. The configuration is * given in ms. We insure a multiple of the beacon * period is used. Also, if the sleep duration is * greater than the DTIM period then it makes senses * to make it a multiple of that. * * XXX fixed at 100ms */ bs.bs_sleepduration = roundup(IEEE80211_MS_TO_TU(100), sleepduration); if (bs.bs_sleepduration > bs.bs_dtimperiod) bs.bs_sleepduration = bs.bs_dtimperiod; DPRINTF(sc, ATH_DBG_BEACON, "%s: tsf %llu " "tsf:tu %u " "intval %u " "nexttbtt %u " "dtim %u " "nextdtim %u " "bmiss %u " "sleep %u " "cfp:period %u " "maxdur %u " "next %u " "timoffset %u\n" , __func__ , (unsigned long long)tsf, tsftu , bs.bs_intval , bs.bs_nexttbtt , bs.bs_dtimperiod , bs.bs_nextdtim , bs.bs_bmissthreshold , bs.bs_sleepduration , bs.bs_cfpperiod , bs.bs_cfpmaxduration , bs.bs_cfpnext , bs.bs_timoffset ); ath9k_hw_set_interrupts(ah, 0); ath9k_hw_set_sta_beacon_timers(ah, &bs); sc->sc_imask |= ATH9K_INT_BMISS; ath9k_hw_set_interrupts(ah, sc->sc_imask); } else { u64 tsf; u32 tsftu; ath9k_hw_set_interrupts(ah, 0); if (nexttbtt == intval) intval |= ATH9K_BEACON_RESET_TSF; if (sc->sc_opmode == ATH9K_M_IBSS) { /* * Pull nexttbtt forward to reflect the current * TSF . */ #define FUDGE 2 if (!(intval & ATH9K_BEACON_RESET_TSF)) { tsf = ath9k_hw_gettsf64(ah); tsftu = TSF_TO_TU((u32)(tsf>>32), (u32)tsf) + FUDGE; do { nexttbtt += intval; } while (nexttbtt < tsftu); } #undef FUDGE DPRINTF(sc, ATH_DBG_BEACON, "%s: IBSS nexttbtt %u intval %u (%u)\n", __func__, nexttbtt, intval & ~ATH9K_BEACON_RESET_TSF, conf.beacon_interval); /* * In IBSS mode enable the beacon timers but only * enable SWBA interrupts if we need to manually * prepare beacon frames. Otherwise we use a * self-linked tx descriptor and let the hardware * deal with things. */ intval |= ATH9K_BEACON_ENA; if (!ah->ah_caps.halVEOLSupport) sc->sc_imask |= ATH9K_INT_SWBA; ath_beaconq_config(sc); } else if (sc->sc_opmode == ATH9K_M_HOSTAP) { /* * In AP mode we enable the beacon timers and * SWBA interrupts to prepare beacon frames. */ intval |= ATH9K_BEACON_ENA; sc->sc_imask |= ATH9K_INT_SWBA; /* beacon prepare */ ath_beaconq_config(sc); } ath9k_hw_beaconinit(ah, nexttbtt, intval); sc->sc_bmisscount = 0; ath9k_hw_set_interrupts(ah, sc->sc_imask); /* * When using a self-linked beacon descriptor in * ibss mode load it once here. */ if (sc->sc_opmode == ATH9K_M_IBSS && ah->ah_caps.halVEOLSupport) ath_beacon_start_adhoc(sc, 0); } #undef TSF_TO_TU } /* Function to collect beacon rssi data and resync beacon if necessary */ void ath_beacon_sync(struct ath_softc *sc, int if_id) { /* * Resync beacon timers using the tsf of the * beacon frame we just received. */ ath_beacon_config(sc, if_id); sc->sc_beacons = 1; }